Les réseaux de neurones artificiels facilitent l’apprentissage automatique et bouleversent de nombreux secteurs économiques. Durant cette formation vous utilisez les outils les plus répandus du domaine afin de réaliser et entrainer différents types de réseaux de neurones profonds sur des jeux de données diversifiés.

Description

Durée : 28 heures
Modalités techniques d’évaluation : Évaluation des connaissances par QCM, évaluation des compétences au travers de travaux pratiques et de cas d’études. Contrôle de l’acquisition des connaissances et des compétences pendant la formation par le formateur.
Moyens pédagogiques : Apports théoriques réalisés en classe et complétés par de nombreux travaux pratiques permettent aux participants de disposer d’une expérience concrète. A l’issue des sessions magistrales, réalisation de cas d’études tutorés.

Objectifs pédagogiques

À l’issue de la formation, le participant sera en mesure de :

  • Comprendre l’évolution des réseaux de neurones et les raisons du succès actuel du Deep Learning
  • Utiliser les bibliothèques de Deep Learning les plus populaires
  • Comprendre les principes de conception, les outils de diagnostic et les effets des différents verrous et leviers
  • Acquérir de l’expérience pratique sur plusieurs problèmes réels
PROGRAMME DE FORMATION

Introduction

  • Créer un premier graphe et l’exécuter dans une session.
  • Cycle de vie de la valeur d’un nœud.
  • Manipuler des matrices. Régression linéaire. Descente de gradient.
  • Fournir des données à l’algorithme d’entraînement.
  • Enregistrer et restaurer des modèles. Visualiser le graphe et les courbes d’apprentissage.

Démonstration
Présentation des exemples de Machine Learning en classification et régression.

Introduction aux réseaux de neurones artificiels

  • Entraîner un PMC (Perceptron MultiCouche) avec une API TensorFlow de haut niveau.
  • Entraîner un PMC (Perceptron MultiCouche) avec TensorFlow de base.
  • Régler précisément les hyperparamètres d’un réseau de neurones.

Entraînement de réseaux de neurones profonds

  • Problèmes de disparition et d’explosion des gradients.
  • Réutiliser des couches pré-entraînées.
  • Optimiseurs plus rapides.
  • Éviter le sur-ajustement grâce à la régularisation.
  • Recommandations pratiques.

Travaux pratiques
Mise en œuvre d’un réseau de neurones à la manière du framework TensorFlow.

Réseaux de neurones convolutifs

  • L’architecture du cortex visuel.
  • Couche de convolution.
  • Couche de pooling.
  • Architectures de CNN.

Travaux pratiques
Mise en œuvre des CNN en utilisant des jeux de données variés.

Deep Learning avec Keras

  • Régression logistique avec Keras.
  • Perceptron avec Keras.
  • Réseaux de neurones convolutifs avec Keras.

Travaux pratiques
Mise en œuvre de Keras en utilisant des jeux de données variés.

Réseaux de neurones récurrents

  • Neurones récurrents. RNR de base avec TensorFlow.
  • Entraîner des RNR. RNR profonds.
  • Cellule LSTM. Cellule GRU.
  • Traitement automatique du langage naturel.

Travaux pratiques
Mise en œuvre des RNN en utilisant des jeux de données variés.

Autoencodeurs

  • Représentations efficaces des données.
  • ACP avec un autoencodeur linéaire sous-complet.
  • Autoencodeurs empilés. Pré-entraînement non supervisé.
  • Autoencodeurs débruiteurs. Autoencodeurs épars. Autoencodeurs variationnels. Autres autoencodeurs.

Travaux pratiques
Mise en œuvre d’autoencodeurs en utilisant des jeux de données variés.